Linear algebra - Practice problems for midterm 2

1. Let $T: \mathcal{P}_2 \to \mathcal{P}_3$ be the linear transformation given by

$$T(p(x)) = \frac{dp(x)}{dx} - xp(x),$$

where $\mathcal{P}_2, \mathcal{P}_3$ are the spaces of polynomials of degrees at most 2 and 3 respectively.

- (a) Find the matrix representative of T relative to the bases $\{1, x, x^2\}$ and $\{1, x, x^2, x^3\}$ for \mathcal{P}_2 and \mathcal{P}_3 .
- (b) Find the kernel of T.
- (c) Find a basis for the range of T.

2. Determine whether the following subsets of \mathcal{P}_3 are subspaces.

- (a) $U = \{p(x) : p(3) = 0\}$
- (b) $V = \{p(x) : p(0) = 1\}$
- (c) $W = \{p(x) : \text{ the coefficient of } x^2 \text{ in } p(x) \text{ is } 0\}.$

3. Let $M_{m \times n}$ be the vector space of $m \times n$ matrices, with the usual operations of addition and scalar multiplication.

(a) Let A be an $m \times m$ matrix. Is the function

$$T: M_{m \times n} \to M_{m \times n}$$

given by T(B) = AB a linear transformation?

- (b) Let $V \subset M_{m \times n}$ be the subset consisting of those matrices, whose entries all add up to zero. Is V a subspace of $M_{m \times n}$?
- 4. Show that the subspaces $\operatorname{sp}(x-x^2, 2x)$ and $\operatorname{sp}(x^2, 3x+x^2)$ of \mathcal{P}_2 are equal.
- 5. Find a basis for the subspace $sp(1 + x^2, 2x x^2, 4x + 2)$ of \mathcal{P}_3 .
- 6. Working in the space \mathcal{P}_3 , find the coordinate vector of x^2 , relative to the basis $\{1, x 1, (x 1)^2, (x 1)^3\}$.
- 7. Compute the determinant

$$\det \begin{bmatrix} 3 & -2 & 7 & 6 \\ -4 & 0 & 2 & 1 \\ 5 & 2 & 0 & -2 \\ 2 & 0 & -1 & 0 \end{bmatrix}$$

8. Suppose that A is an $n \times n$ matrix, such that all of the entries of A add up to zero. Is it true that det(A) = 0?