Linear algebra - Practice problems for midterm 2

1. Let $T: \mathcal{P}_{2} \rightarrow \mathcal{P}_{3}$ be the linear transformation given by

$$
T(p(x))=\frac{d p(x)}{d x}-x p(x),
$$

where $\mathcal{P}_{2}, \mathcal{P}_{3}$ are the spaces of polynomials of degrees at most 2 and 3 respectively.
(a) Find the matrix representative of T relative to the bases $\left\{1, x, x^{2}\right\}$ and $\left\{1, x, x^{2}, x^{3}\right\}$ for \mathcal{P}_{2} and \mathcal{P}_{3}.
(b) Find the kernel of T.
(c) Find a basis for the range of T.
2. Determine whether the following subsets of \mathcal{P}_{3} are subspaces.
(a) $U=\{p(x): p(3)=0\}$
(b) $V=\{p(x): p(0)=1\}$
(c) $W=\left\{p(x)\right.$: the coefficient of x^{2} in $p(x)$ is 0$\}$.
3. Let $M_{m \times n}$ be the vector space of $m \times n$ matrices, with the usual operations of addition and scalar multiplication.
(a) Let A be an $m \times m$ matrix. Is the function

$$
T: M_{m \times n} \rightarrow M_{m \times n}
$$

given by $T(B)=A B$ a linear transformation?
(b) Let $V \subset M_{m \times n}$ be the subset consisting of those matrices, whose entries all add up to zero. Is V a subspace of $M_{m \times n}$?
4. Show that the subspaces $\operatorname{sp}\left(x-x^{2}, 2 x\right)$ and $\operatorname{sp}\left(x^{2}, 3 x+x^{2}\right)$ of \mathcal{P}_{2} are equal.
5. Find a basis for the subspace $\operatorname{sp}\left(1+x^{2}, 2 x-x^{2}, 4 x+2\right)$ of \mathcal{P}_{3}.
6. Working in the space \mathcal{P}_{3}, find the coordinate vector of x^{2}, relative to the basis $\left\{1, x-1,(x-1)^{2},(x-1)^{3}\right\}$.
7. Compute the determinant

$$
\operatorname{det}\left[\begin{array}{cccc}
3 & -2 & 7 & 6 \\
-4 & 0 & 2 & 1 \\
5 & 2 & 0 & -2 \\
2 & 0 & -1 & 0
\end{array}\right]
$$

8. Suppose that A is an $n \times n$ matrix, such that all of the entries of A add up to zero. Is it true that $\operatorname{det}(A)=0$?
